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The Hartree-Fock pseudoeigenvalues equations have been derived for configuration
interaction in the case of two atomic configurations ns®np¥ and np¥+2, A special case of in-
vestigation is the interaction between the nearly-degenerate configurations 1s?2s?2p¥ and
1s22p¥+2, The LCAO form of the equations has also been established.

On établit les équations de Hartree-Fock correspondant & une interaction de configuration
entre deux configurations atomiques ns?np? et np¥+2. Le cas simple d’interaction entre les deux
configurations presque dégénérées 1s?2s?2p¥ et 1522p¥+2 a été plus particulidrement étudié.
Les équations sont également présentées sous leur forme L.C.A.O.

Hartree-F ock Pseudoeigenwertgleichungen werden fiir die Konfigurationswechselwirkung
im Fall der zwei Atomkonfigurationen ns*np?¥ und np¥+2 abgeleitet. Ein Spezialfall, der unter-
sucht wird, ist die Wechselwirkung zwischen den beinahe entarteten Konfigurationen 15?25s22d~
und 1s2p¥+2, Die Gleichungen werden auch in ihrer LCAO Form angegeben.

Introduction

The process of configuration interaction is generally carried out by minimizing
separately the energy expressions for the different configurations, which allows
the determination of the wavefunctions for these different configurations; it is
only in a second step that configuration interaction is introduced, taking into
account the interaction between the previous defined configurations. The rigorous
scheme (see for instance ref. [3] and [7]) would consist of introducing configuration
interaction at the first step when writing the expression of the energy, then apply-
ing the variational principle to this expression in order to derive the equations
for the orbitals. We establish, in the following pages, the corresponding Hartree-
Fock type equations in the case of two atomic configurations nsnp™ and npN+2.

1. General Orbital Theory
Our formalism is closely related to that used by RoorHAAN [4] and we shall
define only original notations.
The following limitations will be introduced :
— the interaction involves only two configurations;
— the expectation value of the energy is given, for each configuration, by [5]:

E=23Hp+>2Ju—Ke) +f22Hun+12 2aTmn—bKpn) +
+2Z(2ka"Kkm)]
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— the two configurations 4 and B are built from the following shells:

— a common closed shell C;

— a closed shell ¢V which appears only in 4;

— a common open shell O with different occupation numbers in 4 and B.

Finally we shall restrict this study to the case where €' includes only one closed
shell s2, and where O is an open or closed shell p; the two configurations involved
are then:

A 16%..... (n—1) p® or d1° ns? npN 0<N<4)
[ —_—
closed shell ¢' closed shell (" open shell O
B 1s% (n—1) p® or d'° npN+2

The two-configurations wave function is given as:
D=AY (... ns®npN) + B (... np¥+2).
We assume that the expectation value of the energy is given by
E=42{2 % Hy + % CJIp—Kp) + 2 kZ Hy + NZV CJpy —Kpy)+
+23 @ Jow — Kow)+ |

kx/!

+ fl [ZZHm‘|'flz(2a1Jmn—b1Kmn)‘|‘22(2ka‘“Kkm)+
m km

mn

+ 2 Z (2 Jk:m—K]g/m)]}—l— (1)

klm

+ B225 Hy+ 2> QCJui—Kp) +[2 20 Hu+ f50 (203 Jmn— by Kipn) +
k Kl m mn
+ 22> 2Jem— Kim)]} +2A4Bc 2 > Kpi -
km . K m

The subscripts k and Ij/k’ and U'/m and » refer to orbitals of the closed shell C/closed
shell ¢ Jopen shell O. f, and f, are the fractional occupation of the open shell O in the
two configurations.
Eq. (1) implies that the interaction energy term between the two configur-
ations is given by ¢ > > Ky, where ¢ means a real number. That is, we assume
K m

that for atoms this term can be expressed by means of Slater-Condon integrals
G* (see Appendix for the interaction term in the special case of the two con-
figurations 1s%2s22pY and 1s22pN+2),

The orthonormalization conditions are:

{pi | > = 8y (2)

A%+ B2 =1, (3)

We minimize the energy (1) with respect to the orbitals and the parameters 4 and
B, taking into account the constraints (2) and (3). The resulting equations for the
two closed shells € and ¢’ and for the open shell O are:

[AZ(H—I—QJC”Kc-{—QJC/—KCl +2J})—K10)+32(H—|—2J0—Kc+
+2J5— K3l gp =3 @ e = 3 g1 6y (4)

and:
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[42 (H +2J¢— Ko+ 2Jo — Koy + 2 J5 — Kb) +4Be S Kyl oi
=2 @ Ui = JZ%‘ Y, _ " (5)
[A2f, (H + 2Jo— Ko+ 2Jor — Ko+ 2a, J5 — by K5y + B2 f, (H + 2 Jo—
~ Ko 420y J5 by Kb) + ABo Koilgm = 3.0 Om =3 @1 Omi - (6)
The parameters A and B are defined by: |
AHy+ Bo3 S Kiim— 14 =0 , (7
BHB+A622Kk,m~AB:O. (8)
We used the notations: o
Fo=h3dn Ky=h3Km J5=H3Tw Ky=h3En ©
Hy= 2%Hk + % (2Jp— Kgi) + 2 kzl Hy, +klzy 2Jdpy — Kpp) +
+ 2> @2Jgp — Kyie)+

k!

+f [2§Hm—i—f1% (2a; Jmn— by Kmn)—i-Q% (2 Jem — Kigm)+ (10)
+ 2’% 2 Jorm — Kirm)]
HB:2%H7c+%(2Jkl—Kkl)+f2[2gHm+fzg(2“2Jmn—szmn)+
+2 %‘(Qka-‘Kkm)]- (11)
From (7) and (8) we can derive:
/1=E:A2HA—I—BZHB+2ABckE,ZKk,m. (12)

We notice that the Lagrangian multipliers constitute a Hermitian matrix:
O = Oy - (13)

All the operators which appear in Eqgs. (4), (5) and (6) are invariant under the
transformations:

ge=9¢cUc go=gc Uc  9o=90Uo (14)
but such transformations cannot eliminate the off-diagonal multipliers Oz,
Oxm, Oxim in order to reduce Eqs. (4), (5) and (6) to pseudoeigenvalue equations.
So we are faced with the problem of eliminating these off-diagonal multipliers by
absorbing them into the left-hand side of Eqgs. (4), (5) and (6) [5].

It can be seen easily that, in the case where C” is an s closed-shell and O is a p
open-shell :
0mkl = 0 .

Further, if we limit the scope of this study to the case where C is a closed shell 1s*
(that is, to the first row atoms and isoelectronic ions):

Omr=0.

The only problem is then to eliminate 6y = 0as, 15s. This is done in Part II,
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where the straightforward Hartree-Fock pseudoeigenvalue equations are also
deduced. :
In the general case, we can drop the restriction:

emkl = 0

this may be useful for subsequent generalizations. We rewrite Egs. (4), (5) and (6)
in the form:

Foor=2 @0+ 2> v vk + > @n Onk
1 1 n

Fer g = Z Q1 O - z(pl/ Opp + Zq)n O (15)
1 12 n

F0¢m:z¢l6lm+z¢l’ ellm‘}‘zipnenm-
1 v n

Using the hermiticity of the off-diagonal multipliers, we can express the off-
diagonal multipliers between orbitals of C, €, and O in the following manner [4]:

vk = <pu | O% | pr> O = <1 | OF | @i
Our = {@n | @8 |(Pk> O = L I @8 |¢m> (16)
Ontr = {pu | OF | grr> Ovm = <o | 0% | pmd
with
Oy =13 Fy+ (1—1%) Fx. (17)
where A¥ is an arbitrary real number.
We choose:
04 = 6F = 42 (2 Jo — Ko + 2 Jh— Kb — 27 + Kb) + o0 S Ky = Bces
(18)
1
@g = @8 = AP B (fa— 1) (2T — Ko ) + A2 [(4%—ay) f; +

_Pf1+32f2*1
+ B2 f3]2J0, — A2[(A2—b)) f; + B2f,] Ky + B*[A%f, +
+ (B2 —ay) 1205 — B [A2 f, + (B* —by) fo] K — ABc Ko} = Oco  (19)

1

@C/ - @8/ = W{AZ BZ ](2 (2 JCI —Kcr) + AZ [AZ fl (1 — al) +
+ Bfy]2Jh — A2[Af (1—by) + B fy] Ky — A% B2 fya, - 2.5 +
A2 B2 fy by K + (A2 fy+ B2 fy) ABcS Ky — A2 ABc Kov} = Oci . (20)
Defining the coupling operators:
RG = —[ > gu {gu | Ocer) + (Ocor |uy pul
I
Bf = —1[2 ¢u<lpn|Oco) + (Bco | pu) @l
RY = —[3 o lo1| Ocer) + Occr | 1> @il (21)
14

Rg’ =—] Z @n {Pn 1 Ocio) + Ocio ] Pn) Pnl
RY — —] ; @1 {pv | Oco) + (Oco | gud g1l
B =—1 3 ou pu [Oci0) + Ocio [ g gu] .
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Eqgs. (15) can be written in new forms which constitute the Hartree-Fock pseudo-
eigenvalue equations:

(Fe+ RS + RE) gx = ;% Oix
(For + Rg/ -+ Rgl) @ = ;‘Pl' O (22)
(Fo+ R(Oj‘|‘ Rgf)(,vm:: Z(Pnenlc

The explicit forms of the operators Bf have been given elsewhere [6] and for the
sake of briefness we shall not report them.

II. Special Case of the Configurations 1s® 2s? 2pN — 1s* 2pN+?
In the simple case of configuration interaction between two configurations
1522s22pN and 1s22p¥+2, Egs. (4), (5), and (6) become:
Frsgus=[H + 2 J15— Ky5+ A2 (2 Jos — Ko + 2Jp— Kb) + B (2T —

— K3) @15 = @15 bus + @as O2s, 15 (23)
Fzs(st = [Az (H+ 2J1s— K15+ 2J28_K2s + QJ})—K%)) -+ ABGZKm](PZS
= @15 O1s, 25 + @as Oas (24)

Foom=1[421, (H+2J1s— Kys+ 2 Jas— Kos + 2 0, Joy— by Kp) +
+ B, (H+2Jys—Kis +2a,J5—b, K3) +

+ ABc Kys| pm = Z Pn Onm - (25)
In our attempt to eliminate the off-diagonal multipliers Ozs, 15 and 0Oys, 25, We
A? 1 .
chooseﬂuz——B—2 1—Z=m1n Eq. (17) so that:

AB
@=A2(2J28—Kzs+QJ})MK})~2J%,+K?))+1—_%ZKWZ (26)

and we define the coupling operators:
Ras = — [pas {qas | ©) + (O | p2s) {p2s |] (27)
Bys=— [(Pls <(Pls I @) + (@ | (Pls> <(Pls I] .
Using Eq. (27), Egs. (23) and (24) become:
(F1s + Ras) @15 = @us O1s (28)
(Fas + Bus) pas = pas Oas -

Eqs. (28) and (25) are the pseudoeigenvalue Hartree-Fock equations. A formula-
tion in which the 1s and 2s orbitals are solutions of the same eigenvalue equation
has been reported elsewhere [6]. We must join the Eqgs. (7), (8) and (12} with, in
this case:

Hi=2Hys+ Jis, 15+ 2 Has + Jos, 25 + 2 (2 Jus, 25 — Kus, 25) + 1 [2 % Ha

+ f%@ anmn_blen)—Fzg 2 J1s, m— Kus, m) +

+ 2 g (2 J2s, m— Kas, m)] (29)
HB=2H15+J13,18+f2[2%Hm+fzg(2a2Jmn—b2Kmn)+

+2 % 2 J1s, m— Kis, m)]
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IMI. LCAO Form for the Configurations 1s® 2s* 2pN — 157 2pN+2
If the orbitals are expanded in terms of basis functions according to [5]:

Pise = 2, Apix Ciap
»
the energy expression for each configuration can be written in a form similar to

that given in Ref. [I].
The interaction energy term H 4p can be written in the form (see Appendix):

Hup= 3 Nas Cosp Cosq @spa, Prs (¢ Nip Cipr Cips + B Nip Cipr Cips) (30)

pars

Minimizing the corresponding total expression in respect with the coefficients
C, we derive the following equations:

Z {42 [Hspq + Z Pspq, srs Dy g5 + Z Pspq, prs D, prs) + B2 [Hy, g+

+ Z Pspq, srs D grs + 2 Pspq, prs Dy, prsl} Crsg = Z Sspq 01Sq—sE + 3

0s 21

+ Z Sspq O 25¢ 7
> {A% [Hspg + Z Pspq, srs D sps + Z Pspg, Prs D, pys] +
q
0s 12

+ 4B Z Qspa, Prs (xD% ps + BDY pys)} Crsg = Z Sspe Crsa g +

+ 2 Ssna C’mijzz (32)
Z {Nip A2 [Hppq + Z Pspq, Prs Dip, s + Z Pppq, Prs D, prs—

- Z @bpa, Prs Db, prs] + Nip B2 [Hppg + E Pspq, Prs D grs +

+ Z Prpq, Prs D, prs— % Qbpg, rs Db, prsl + (33)

+ (aNip + BN3p) AB S Qppg, srs Das, rs} C1pq = 2. Sppg Cirg Opun
rs a
by defining:
Dy grs = 2. (N5 Cisr Ciss + Nas Cosy Cass) = Dis, rs + Das, rs

2
DT,Srs = Z NlS OIST 0185 = DlS, rs
rs
1 = 1 Nt i
DT Prs_ZNlP OIPT OIPS —DlP,rs—-DOP,rs
2 2
D, prs = Z Nip Cipy Cips = Dip o =Dip 1

Dsg, s = DC', rs = 2 Nag Casr Cass .
We rewrite Eqgs. (31) and (32) in the form:

0 7}
z Fls, »a OJ,Sq = Z SSpq OlSq = + Z SSpq 0254 o= (34)
7 P Nis Nis

7 6
Z FzS, »a 02Sq = Z SSpq OISq ;12 + Z SSpq 02&1 Z\; = . (35)
q I3 2

We define:
NisGs, pg = Nas Gs, pg = AN1s Fis, pg + (1 —A) Nas Fas, pg
RZS, pqg = — Z (SSpu Ozsu Gqu Osz + GSpu OzSu Squ Ozsw) .
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After some straightforward algebra Eqgs. (34) can be written in the new form:

i 0

2 (F1s, pg + Ras, pg) Orsg = 2. Sspa OISql\;—n (36)
q q 18

In a similar manner, defining:

RlS, pg = [ Z SSpu OlSu GS, wq OISw + Z GSpu Olsu Squ 01Sw]

it can be shown easily that Eq. (35) can be written:
- 6
2, (Fas, pg + Bus, pa) Casq = 2. Sspa OzsqNS—zz- 37)
q q 28

Eqgs. (36) (37) and (33) are the three eigenvalue equations. We must join again the
two equations defining 4 and B:

AH 4+ BHap—iAd =0 7)
AH 5+ BHg—AB =0 (8)
with
Hy = pzq (Hspq Dy, spg + Hppa Din, ppg) + %gﬁ (DY spePspa, srs D ges +
+ 2 DY, spq Pswa, Prs D, prs + D, pog Ppoa, Prs D, pre —
- D%l’, Ppyg Q}’pq, Prs D%I’ Prs) (38)
Hg= % (Hqu DZT, Spq + HPZNI D?l’, qu) + %gs (D?l',Spq PSZMI, Srs DZT,STS +
+ 2 D% spg Pswa, Prs D, prs + Do, ppg Proa, Prs D, prs —
- D?l’, Ppy Q%—’pq,Prs Dg_f’, Prs) (39)
Huip=3 Dys, pq@spa, prs (&Dhp pys + DT, pys) (40)

pars
Results for the first row atoms and isoelectronic ions and their discussion in
respect with correlation energy will be given in a subsequent paper [2].
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Appendix
Interaction Term H 4p for the Two Configurations 1s2 2s%2pN and 1s22pi+2
For the two configurations 1s22s22p~ and 1s?2p¥+2 the interaction term H.z is given by:
Hup = OG* (28, 2p) .
The values of C are reported in the table for each spectroscopic state of interest:

Table
i C Ksp1
N_o | 18 o B
3 6
1 2p 2o
3 9
—2 sp I
3_ 12
_3 2p vz _ 2
3 5
-4 18 BB
3 18
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In the LCAO equation, Eq. (40), we wrote this term:
Hug = z Des, pg @ spa, prs (o D;’, ps + B D2T= Prs)

pars

with:
2h< 1 At p] »
Qspa, Prs = Z Giuw G, pHrs—g Z K 3w A jpa, yrs
»=0 y=|4—ul

=‘JSP0 ggpq, Prs — % KSPI %‘épq, Pre
The identification is straightforward:
Jspo =0
2C ¢
Kspi =~ ——— =~ ifweput o =0 =1.
sP1 Now N%p ¥z, P B
We report Ksp1 in the table.
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